Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Time series analysis underpins many real-world applications, yet existing time-series-specific methods and pretrained large-model-based approaches remain limited in integrating intuitive visual reasoning and generalizing across tasks with adaptive tool usage. To address these limitations, we propose MAS4TS, a tool-driven multi-agent system for general time series tasks, built upon an Analyzer-Reasoner-Executor paradigm that integrates agent communication, visual reasoning, and latent reconstruction within a unified framework. MAS4TS first performs visual reasoning over time series plots with structured priors using a Vision-Language Model to extract temporal structures, and subsequently reconstructs predictive trajectories in latent space. Three specialized agents coordinate via shared memory and gated communication, while a router selects task-specific tool chains for execution. Extensive experiments on multiple benchmarks demonstrate that MAS4TS achieves state-of-the-art performance across a wide range of time series tasks, while exhibiting strong generalization and efficient inference.
Long-term satellite image time series (SITS) analysis in heterogeneous landscapes faces significant challenges, particularly in Mediterranean regions where complex spatial patterns, seasonal variations, and multi-decade environmental changes interact across different scales. This paper presents the Spatio-Temporal Transformer for Long Term Forecasting (STT-LTF ), an extended framework that advances beyond purely temporal analysis to integrate spatial context modeling with temporal sequence prediction. STT-LTF processes multi-scale spatial patches alongside temporal sequences (up to 20 years) through a unified transformer architecture, capturing both local neighborhood relationships and regional climate influences. The framework employs comprehensive self-supervised learning with spatial masking, temporal masking, and horizon sampling strategies, enabling robust model training from 40 years of unlabeled Landsat imagery. Unlike autoregressive approaches, STT-LTF directly predicts arbitrary future time points without error accumulation, incorporating spatial patch embeddings, cyclical temporal encoding, and geographic coordinates to learn complex dependencies across heterogeneous Mediterranean ecosystems. Experimental evaluation on Landsat data (1984-2024) demonstrates that STT-LTF achieves a Mean Absolute Error (MAE) of 0.0328 and R^2 of 0.8412 for next-year predictions, outperforming traditional statistical methods, CNN-based approaches, LSTM networks, and standard transformers. The framework's ability to handle irregular temporal sampling and variable prediction horizons makes it particularly suitable for analysis of heterogeneous landscapes experiencing rapid ecological transitions.
Foundation models have transformed language, vision, and time series data analysis, yet progress on dynamic predictions for physical systems remains limited. Given the complexity of physical constraints, two challenges stand out. $(i)$ Physics-computation scalability: physics-informed learning can enforce physical regularization, but its computation (e.g., ODE integration) does not scale to extensive systems. $(ii)$ Knowledge-sharing efficiency: the attention mechanism is primarily computed within each system, which limits the extraction of shared ODE structures across systems. We show that enforcing ODE consistency does not require expensive nonlinear integration: a token-wise locally linear ODE representation preserves physical fidelity while scaling to foundation-model regimes. Thus, we propose novel token representations that respect locally linear ODE evolution. Such linearity substantially accelerates integration while accurately approximating the local data manifold. Second, we introduce a simple yet effective inter-system attention that augments attention with a common structure hub (CSH) that stores shared tokens and aggregates knowledge across systems. The resulting model, termed LASS-ODE (\underline{LA}rge-\underline{S}cale \underline{S}mall \underline{ODE}), is pretrained on our $40$GB ODE trajectory collections to enable strong in-domain performance, zero-shot generalization across diverse ODE systems, and additional improvements through fine-tuning.
Time series forecasting plays a critical role in decision-making across many real-world applications. Unlike data in vision and language domains, time series data is inherently tied to the evolution of underlying processes and can only accumulate as real-world time progresses, limiting the effectiveness of scale-driven pretraining alone. This time-bound constraint poses a challenge for enabling large language models (LLMs) to acquire forecasting capability, as existing approaches primarily rely on representation-level alignment or inference-time temporal modules rather than explicitly teaching forecasting behavior to the LLM. We propose T-LLM, a temporal distillation framework that equips general-purpose LLMs with time series forecasting capability by transferring predictive behavior from a lightweight temporal teacher during training. The teacher combines trend modeling and frequency-domain analysis to provide structured temporal supervision, and is removed entirely at inference, leaving the LLM as the sole forecasting model. Experiments on benchmark datasets and infectious disease forecasting tasks demonstrate that T-LLM consistently outperforms existing LLM-based forecasting methods under full-shot, few-shot, and zero-shot settings, while enabling a simple and efficient deployment pipeline.
Time series data are integral to critical applications across domains such as finance, healthcare, transportation, and environmental science. While recent work has begun to explore multi-task time series question answering (QA), current benchmarks remain limited to forecasting and anomaly detection tasks. We introduce TSAQA, a novel unified benchmark designed to broaden task coverage and evaluate diverse temporal analysis capabilities. TSAQA integrates six diverse tasks under a single framework ranging from conventional analysis, including anomaly detection and classification, to advanced analysis, such as characterization, comparison, data transformation, and temporal relationship analysis. Spanning 210k samples across 13 domains, the dataset employs diverse formats, including true-or-false (TF), multiple-choice (MC), and a novel puzzling (PZ), to comprehensively assess time series analysis. Zero-shot evaluation demonstrates that these tasks are challenging for current Large Language Models (LLMs): the best-performing commercial LLM, Gemini-2.5-Flash, achieves an average score of only 65.08. Although instruction tuning boosts open-source performance: the best-performing open-source model, LLaMA-3.1-8B, shows significant room for improvement, highlighting the complexity of temporal analysis for LLMs.
Multivariate time series in domains such as finance, climate science, and healthcare often exhibit long-term trends, seasonal patterns, and short-term fluctuations, complicating causal inference under non-stationarity and autocorrelation. Existing causal discovery methods typically operate on raw observations, making them vulnerable to spurious edges and misattributed temporal dependencies. We introduce a decomposition-based causal discovery framework that separates each time series into trend, seasonal, and residual components and performs component-specific causal analysis. Trend components are assessed using stationarity tests, seasonal components using kernel-based dependence measures, and residual components using constraint-based causal discovery. The resulting component-level graphs are integrated into a unified multi-scale causal structure. This approach isolates long- and short-range causal effects, reduces spurious associations, and improves interpretability. Across extensive synthetic benchmarks and real-world climate data, our framework more accurately recovers ground-truth causal structure than state-of-the-art baselines, particularly under strong non-stationarity and temporal autocorrelation.
Transformer-based foundation models have achieved remarkable progress in tasks such as time-series forecasting and image segmentation. However, they frequently suffer from error accumulation in multivariate long-sequence prediction and exhibit vulnerability to out-of-distribution samples in image-related tasks. Furthermore, these challenges become particularly pronounced in large-scale Web data analysis tasks, which typically involve complex temporal patterns and multimodal features. This complexity substantially increases optimization difficulty, rendering models prone to stagnation at saddle points within high-dimensional parameter spaces. To address these issues, we propose a lightweight Transformer architecture in conjunction with a novel Escape-Explore Optimizer (EEO). The optimizer enhances both exploration and generalization while effectively avoiding sharp minima and saddle-point traps. Experimental results show that, in representative Web data scenarios, our method achieves performance on par with state-of-the-art models across 11 time-series benchmark datasets and the Synapse medical image segmentation task. Moreover, it demonstrates superior generalization and stability, thereby validating its potential as a versatile cross-task foundation model for Web-scale data mining and analysis.
This paper proposes a unified family of learnable Koopman operator parameterizations that integrate linear dynamical systems theory with modern deep learning forecasting architectures. We introduce four learnable Koopman variants-scalar-gated, per-mode gated, MLP-shaped spectral mapping, and low-rank Koopman operators which generalize and interpolate between strictly stable Koopman operators and unconstrained linear latent dynamics. Our formulation enables explicit control over the spectrum, stability, and rank of the linear transition operator while retaining compatibility with expressive nonlinear backbones such as Patchtst, Autoformer, and Informer. We evaluate the proposed operators in a large-scale benchmark that also includes LSTM, DLinear, and simple diagonal State-Space Models (SSMs), as well as lightweight transformer variants. Experiments across multiple horizons and patch lengths show that learnable Koopman models provide a favorable bias-variance trade-off, improved conditioning, and more interpretable latent dynamics. We provide a full spectral analysis, including eigenvalue trajectories, stability envelopes, and learned spectral distributions. Our results demonstrate that learnable Koopman operators are effective, stable, and theoretically principled components for deep forecasting.
This dissertation presents a general framework for changepoint detection based on L0 model selection. The core method, Iteratively Reweighted Fused Lasso (IRFL), improves upon the generalized lasso by adaptively reweighting penalties to enhance support recovery and minimize criteria such as the Bayesian Information Criterion (BIC). The approach allows for flexible modeling of seasonal patterns, linear and quadratic trends, and autoregressive dependence in the presence of changepoints. Simulation studies demonstrate that IRFL achieves accurate changepoint detection across a wide range of challenging scenarios, including those involving nuisance factors such as trends, seasonal patterns, and serially correlated errors. The framework is further extended to image data, where it enables edge-preserving denoising and segmentation, with applications spanning medical imaging and high-throughput plant phenotyping. Applications to real-world data demonstrate IRFL's utility. In particular, analysis of the Mauna Loa CO2 time series reveals changepoints that align with volcanic eruptions and ENSO events, yielding a more accurate trend decomposition than ordinary least squares. Overall, IRFL provides a robust, extensible tool for detecting structural change in complex data.
Change Point Detection (CPD) is a critical task in time series analysis, aiming to identify moments when the underlying data-generating process shifts. Traditional CPD methods often rely on unsupervised techniques, which lack adaptability to task-specific definitions of change and cannot benefit from user knowledge. To address these limitations, we propose MuRAL-CPD, a novel semi-supervised method that integrates active learning into a multiresolution CPD algorithm. MuRAL-CPD leverages a wavelet-based multiresolution decomposition to detect changes across multiple temporal scales and incorporates user feedback to iteratively optimize key hyperparameters. This interaction enables the model to align its notion of change with that of the user, improving both accuracy and interpretability. Our experimental results on several real-world datasets show the effectiveness of MuRAL-CPD against state-of-the-art methods, particularly in scenarios where minimal supervision is available.