Topic:Time Series Analysis
What is Time Series Analysis? Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Papers and Code
Aug 29, 2025
Abstract:Understanding causal relations between temporal variables is a central challenge in time series analysis, particularly when the full causal structure is unknown. Even when the full causal structure cannot be fully specified, experts often succeed in providing a high-level abstraction of the causal graph, known as a summary causal graph, which captures the main causal relations between different time series while abstracting away micro-level details. In this work, we present conditions that guarantee the orientability of micro-level edges between temporal variables given the background knowledge encoded in a summary causal graph and assuming having access to a faithful and causally sufficient distribution with respect to the true unknown graph. Our results provide theoretical guarantees for edge orientation at the micro-level, even in the presence of cycles or bidirected edges at the macro-level. These findings offer practical guidance for leveraging SCGs to inform causal discovery in complex temporal systems and highlight the value of incorporating expert knowledge to improve causal inference from observational time series data.
Via

Aug 29, 2025
Abstract:The symplectic geometry mode decomposition (SGMD) is a powerful method for decomposing time series, which is based on the diagonal averaging principle (DAP) inherited from the singular spectrum analysis (SSA). Although the authors of SGMD method generalized the form of the trajectory matrix in SSA, the DAP is not updated simultaneously. In this work, we pointed out the limitations of the SGMD method and fixed the bugs with the pulling back theorem for computing the given component of time series from the corresponding component of trajectory matrix.
* 13 pages, 4 figures, 2 tables
Via

Aug 28, 2025
Abstract:Echo State Networks (ESNs) are a particular type of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) framework, popular for their fast and efficient learning. However, traditional ESNs often struggle with long-term information processing. In this paper, we introduce a novel class of deep untrained RNNs based on temporal residual connections, called Deep Residual Echo State Networks (DeepResESNs). We show that leveraging a hierarchy of untrained residual recurrent layers significantly boosts memory capacity and long-term temporal modeling. For the temporal residual connections, we consider different orthogonal configurations, including randomly generated and fixed-structure configurations, and we study their effect on network dynamics. A thorough mathematical analysis outlines necessary and sufficient conditions to ensure stable dynamics within DeepResESN. Our experiments on a variety of time series tasks showcase the advantages of the proposed approach over traditional shallow and deep RC.
* 10 pages, 6 figures
Via

Aug 26, 2025
Abstract:We present a topological framework for analysing neural time series that integrates Transfer Entropy (TE) with directed Persistent Homology (PH) to characterize information flow in spiking neural systems. TE quantifies directional influence between neurons, producing weighted, directed graphs that reflect dynamic interactions. These graphs are then analyzed using PH, enabling assessment of topological complexity across multiple structural scales and dimensions. We apply this TE+PH pipeline to synthetic spiking networks trained on logic gate tasks, image-classification networks exposed to structured and perturbed inputs, and mouse cortical recordings annotated with behavioral events. Across all settings, the resulting topological signatures reveal distinctions in task complexity, stimulus structure, and behavioral regime. Higher-dimensional features become more prominent in complex or noisy conditions, reflecting interaction patterns that extend beyond pairwise connectivity. Our findings offer a principled approach to mapping directed information flow onto global organizational patterns in both artificial and biological neural systems. The framework is generalizable and interpretable, making it well suited for neural systems with time-resolved and binary spiking data.
Via

Aug 26, 2025
Abstract:Modern time series analysis demands frameworks that are flexible, efficient, and extensible. However, many existing Python libraries exhibit limitations in modularity and in their native support for irregular, multi-source, or sparse data. We introduce pyFAST, a research-oriented PyTorch framework that explicitly decouples data processing from model computation, fostering a cleaner separation of concerns and facilitating rapid experimentation. Its data engine is engineered for complex scenarios, supporting multi-source loading, protein sequence handling, efficient sequence- and patch-level padding, dynamic normalization, and mask-based modeling for both imputation and forecasting. pyFAST integrates LLM-inspired architectures for the alignment-free fusion of sparse data sources and offers native sparse metrics, specialized loss functions, and flexible exogenous data fusion. Training utilities include batch-based streaming aggregation for evaluation and device synergy to maximize computational efficiency. A comprehensive suite of classical and deep learning models (Linears, CNNs, RNNs, Transformers, and GNNs) is provided within a modular architecture that encourages extension. Released under the MIT license at GitHub, pyFAST provides a compact yet powerful platform for advancing time series research and applications.
Via

Aug 28, 2025
Abstract:The Deep Space Network (DSN) is NASA's largest network of antenna facilities that generate a large volume of multivariate time-series data. These facilities contain DSN antennas and transmitters that undergo degradation over long periods of time, which may cause costly disruptions to the data flow and threaten the earth-connection of dozens of spacecraft that rely on the Deep Space Network for their lifeline. The purpose of this study was to experiment with different methods that would be able to assist JPL engineers with directly pinpointing anomalies and equipment degradation through collected data, and continue conducting maintenance and operations of the DSN for future space missions around our universe. As such, we have researched various machine learning techniques that can fully reconstruct data through predictive analysis, and determine anomalous data entries within real-time datasets through statistical computations and thresholds. On top of the fully trained and tested machine learning models, we have also integrated the use of a reinforcement learning subsystem that classifies identified anomalies based on severity level and a Large Language Model that labels an explanation for each anomalous data entry, all of which can be improved and fine-tuned over time through human feedback/input. Specifically, for the DSN transmitters, we have also implemented a full data pipeline system that connects the data extraction, parsing, and processing workflow all together as there was no coherent program or script for performing these tasks before. Using this data pipeline system, we were able to then also connect the models trained from DSN antenna data, completing the data workflow for DSN anomaly detection. This was all wrapped around and further connected by an agentic AI system, where complex reasoning was utilized to determine the classifications and predictions of anomalous data.
Via

Aug 27, 2025
Abstract:The Coherent Multiplex is formalized and validated as a scalable, real-time system for identifying, analyzing, and visualizing coherence among multiple time series. Its architecture comprises a fast spectral similarity layer based on cosine similarity metrics of Fourier-transformed signals, and a sparse time-frequency layer for wavelet coherence. The system constructs and evolves a multilayer graph representing inter-signal relationships, enabling low-latency inference and monitoring. A simulation prototype demonstrates functionality across 8 synthetic channels with a high similarity threshold for further computation, with additional opportunities for scaling the architecture up to support thousands of input signals with constrained hardware. Applications discussed include neuroscience, finance, and biomedical signal analysis.
* Submitted to International Symposium for Signal Processing 2025
Via

Aug 24, 2025
Abstract:Astronomical time series from large-scale surveys like LSST are often irregularly sampled and incomplete, posing challenges for classification and anomaly detection. We introduce a new framework based on Neural Stochastic Delay Differential Equations (Neural SDDEs) that combines stochastic modeling with neural networks to capture delayed temporal dynamics and handle irregular observations. Our approach integrates a delay-aware neural architecture, a numerical solver for SDDEs, and mechanisms to robustly learn from noisy, sparse sequences. Experiments on irregularly sampled astronomical data demonstrate strong classification accuracy and effective detection of novel astrophysical events, even with partial labels. This work highlights Neural SDDEs as a principled and practical tool for time series analysis under observational constraints.
Via

Aug 24, 2025
Abstract:Advancements in deep learning have enabled highly accurate arrhythmia detection from electrocardiogram (ECG) signals, but limited interpretability remains a barrier to clinical adoption. This study investigates the application of Explainable AI (XAI) techniques specifically adapted for time-series ECG analysis. Using the MIT-BIH arrhythmia dataset, a convolutional neural network-based model was developed for arrhythmia classification, with R-peak-based segmentation via the Pan-Tompkins algorithm. To increase the dataset size and to reduce class imbalance, an additional 12-lead ECG dataset was incorporated. A user needs assessment was carried out to identify what kind of explanation would be preferred by medical professionals. Medical professionals indicated a preference for saliency map-based explanations over counterfactual visualisations, citing clearer correspondence with ECG interpretation workflows. Four SHapley Additive exPlanations (SHAP)-based approaches: permutation importance, KernelSHAP, gradient-based methods, and Deep Learning Important FeaTures (DeepLIFT), were implemented and compared. The model achieved 98.3% validation accuracy on MIT-BIH but showed performance degradation on the combined dataset, underscoring dataset variability challenges. Permutation importance and KernelSHAP produced cluttered visual outputs, while gradient-based and DeepLIFT methods highlighted waveform regions consistent with clinical reasoning, but with variability across samples. Findings emphasize the need for domain-specific XAI adaptations in ECG analysis and highlight saliency mapping as a more clinically intuitive approach
Via

Aug 26, 2025
Abstract:Humor is a broad and complex form of communication that remains challenging for machines. Despite its broadness, most existing research on computational humor traditionally focused on modeling a specific type of humor. In this work, we wish to understand whether competence on one or more specific humor tasks confers any ability to transfer to novel, unseen types; in other words, is this fragmentation inevitable? This question is especially timely as new humor types continuously emerge in online and social media contexts (e.g., memes, anti-humor, AI fails). If Large Language Models (LLMs) are to keep up with this evolving landscape, they must be able to generalize across humor types by capturing deeper, transferable mechanisms. To investigate this, we conduct a series of transfer learning experiments across four datasets, representing different humor tasks. We train LLMs under varied diversity settings (1-3 datasets in training, testing on a novel task). Experiments reveal that models are capable of some transfer, and can reach up to 75% accuracy on unseen datasets; training on diverse sources improves transferability (1.88-4.05%) with minimal-to-no drop in in-domain performance. Further analysis suggests relations between humor types, with Dad Jokes surprisingly emerging as the best enabler of transfer (but is difficult to transfer to). We release data and code.
Via
